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Abstract Heat transfer associated with the forced convection flow over a conducting slab sited in an 
aligned uniform stream is investigated analytically and numerically. Both internal and external thermal 
conductivities are taken into consideration by means of a conjugate model consisting of the full Navier- 
Stokes equations for the fluid medium and the energy equations for both the fluid and the slab. The analysis 
facilitates the investigation of the effects of the Reynolds number (Re), the Prandtl number (Pr), the 
thermal conductivity ratio (k) between the slab and the fluid medium and the slab aspect ratio (2) on the 
heat transfer characteristics. For Re >> 1, boundary-layer theory is used to derive two methods of solution 

whose results are compared with the full numerical solutions. ~ 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

It has become increasingly apparent that conjugate 
heat transfer regimes occur frequently in practice and 
that an understanding of them is crucial in many pro- 
cesses. Typical applications where this is true are the 
entrance regimes of pipe or channel flows [1, 2]. In 
addition, flows through tunnels or caves that com- 
municate heat with the surrounding rock walls and 
determine the thermal or environmental conditions 
also fall in this category; in fact, problems involving 
insulated or isothermal tunnel walls have been inves- 
tigated already [3, 4]. Another  area of application is 
in electronic device cooling; due to the low thermal 
conductivity of molding materials in semiconductor 
devices, it is critical to design a cooling system that 
keeps the device temperature below some specified 
value [5, 6]. 

The reference work lbr the coupling of forced con- 
vective heat transfer in a boundary-layer flow over 
a flat plate of finite thickness with two-dimensional 
thermal conduction in the solid plate is due to Per- 

t Present address : Department of Mechanics, Royal Insti- 
tute of Technology, S-100 44 Stockholm, Sweden. 

elman [7]. Apparently, he was the first to present a 
closed-form expression for the temperature and the 
local Nusselt number  at the fluid-solid interface. 
Later, Luikov et al. [8] obtained an exact solution for 
the interracial temperature, reducing the problem, by 
a generalized Fourier sine transform, to a singular 
integral equation. The solution is presented in a com- 
plicated form and does not easily permit a comparison 
with the corresponding traditional (non-conjugate) 
problem. It was again Luikov [9] who gave an 
approximate solution of this problem assuming that 
the temperature in the plate varies linearly with the 
normal distance from its surface, thereby neglecting 
axial conduction in the plate. However, in both these 
papers [8, 9], no numerical results were reported. The 
case of a plate of finite length was analyzed in detail 
by Sakakibara et al. [10] by expanding the fluid-solid 
interfacial temperature as a power series in the square 
root of distance along the flat plate, with unknown 
coefficients to be determined. It was found by these 
authors that the interracial temperature is influenced 
markedly by the wall conduction when the plate is 
short and/or thick and its thermal conductivity is 
higher than that of  the surrounding fluid. 

An extension of the results reported in refs. [8, 91 was 
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A constant 
a thickness of the conducting slab 
b length of the conducting slab 
Ca drag coefficient 
I, integrals in equation (103) 
kf thermal conductivity of the fluid 

medium 
k~ thermal conductivity of the plate 
k thermal conductivity ratio, k j k f  
Nu dimensionless local Nusselt number 
37u dimensionless average Nusselt number 
Tc constant temperature of heated side of 

slab 
T ,  constant temperature of ambient fluid 
Pr Prandtl number for the fluid, v/c¢ 
Q constant 
Re Reynolds number for the fluid, 

bU,~/v 
u, v dimensional velocity components 

along (x, y) axes 
fi, ~ dimensionless velocity components 

along (x,y) axes, (u, v)/U~v 
U~ velocity of the ambient fluid 
x, y dimensional Cartesian coordinates 

along and normal to the plate 
2, ~ dimensional Cartesian coordinates 

(x,y)/b 
x~ size of computational domain in x- 

direction 
y~ size of computational domain in y- 

direction. 

NOMENCLATURE 

Greek symbols 

7 
A T  
AO 

O~ 
Of- 

Ob 
Oh 

Oo 
2 

v 
ff 

"C 

Z 

o )  

thermal diffusivity 
coefficient of thermal expansion 
constant 
temperature difference, T~- T ,  
temperature increment 
similarity variable 
dimensionless temperature in the solid 
dimensionless temperature in the fluid 
medium 
dimensionless boundary temperature 
dimensionless average boundary 
temperature 
constant 
aspect ratio, a/b 
constant 
kinematic viscosity 
dimensionless constant (Rel/2/k or 
(Re Pr)':2/k) 
dimensionless constant (k/2 (Re Pr)"2) 
constant 
dimensionless streamfunction 
dimensionless vorticity. 

Subscripts 
ambient conduction 

i, j nodal quantities. 

Superscripts 
m iterative order 

averaged quantities. 

obtained by Payvar [11] for high Prandtl numbers. 
Karvinen [12, 13] improved the analysis made by Pay- 
var [11] and also presented an iterative technique for 
solving numerically the problem of conjugate heat 
transfer for a flat plate in the presence of internal heat 
sources. A further contribution was made by Chida 
and Katto [14] who solved the problem by vectorial 
dimensional analysis. Gosse [15] has given an ana- 
lytical solution for large values of the distance along 
the plate far downstream from the leading edge of the 
plate. Recently Mori et al. [16] extended the work by 
Sakakibara et al. [10] by combining mass transfer with 
the conjugate heat transfer between the flow and the 
solid plate through the vapour-liquid equilibrium 
relation. Distributions of interfacial temperature, the 
local Nusselt and local Sherwood numbers were cal- 
culated for a parallel-flow case where the Prandtl and 
Schmidt number were equal to unity. 

The literature on conjugate tbrced convection heat 
transfer indicates also some recent papers which fol- 

low Luikov's [9] one-dimensional approximation of 
the conduction process in a flat plate. This model 
problem has been considered in recent years by several 
investigators including Pozzi and Lupo [17], Yu et al. 
[18], Pop and Ingham [19] and Pozzi et al. [20], among 
others, for simple practical uses or further theoretical 
extensions. However, the validity and the applicability 
of the simplification considered in these papers must 
be further examined by detailed analysis including 
also axial thermal conduction in the plate. It is this 
question which motivates the present work. 

In this paper, we solve the two-dimensional con- 
jugate heat transfer problem for a rectangular ther- 
mally conducting slab. The governing equations are 
first developed in dimensionless stream function-vor- 
ticity-temperature form and then solved numerically 
using a finite-difference method for a wide range of 
different values of the four non-dimensional par- 
ameters that are present in the problem : the Reynolds 
number (Re), the Prandtl number (Pr), the aspect 
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Fig. 1. Physical model and coordinate system. 
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ratio of  the slab (;0 and the thermal conductivity ratio 
of  the slab and the fluid (k). For  a thermal and viscous 
boundary-layer regime, two approaches are pre- 
sented : one couples conduction in the solid with the 
boundary-layer flow of  the fluid to give a non-linear 
problem which is solved numerically using the Kel ler-  
Box method and relaxation, the other involves the 
derivation of  approximate analytical one-dimensional 
solutions. The first method encounters numerical 
difficulties when the value of  Rel/Z/k, for Pr >> l [or 
(Re Pr)~/2/k, for Pr << 1] exceeds a critical threshold 
value which depends on 2. The second method proves 
to be valid when k ~< 5 and Pr >> 1. 

2. BASIC EQUATIONS 

Consider the steady, two-dimensional conjugate 
heat transfer in a rectangular slab over which a lami- 
nar incompressible fluid is flowing. The conduct- 
ing slab occupies the region - a  ~< y ~< 0, 
- b /2  <~ x <~ b/2, and the ambient forced flow, which 
occupies - ~ < x < ~ ,  y />  0, has uniform velocity 
Us and temperature T~. A schematic description of  
the model problem is given in Fig. 1. We assume 
that the lower side of  the slab is held at a uniform 
temperature To( > T~,~), whilst the sides x = ~ b/2 are 
insulated. It is also assumed that for the fluid region 
there is no heat flux, no normal outflow and no shear 
at y = 0, Ixl > b/2. For y = 0, [xl < b/2, we expect 
both continuity of  temperature and heat flux. Whilst 
the rationale for most of  these boundary conditions is 
physically evident, that for the conditions at y = 0, 
[x[ > b/2 is not, and requires a little motivation, as 
follows. 

There is little doubt  that the boundary conditions 
we have assumed are not  entirely realistic, particularly 
at the leading edge (x = -b/2) .  From the fluid-mech- 

anical point of  view, it is evident that when a hori- 
zontal block is subject to a horizontal uniform flow 
the horizontal velocity profile at x = - b / 2  can no 
longer be uniform, since mass must be conserved at 
any arbitrary vertical cross-section. At  large Reynolds 
numbers, the situation becomes more complicated 
because of  the possibility of  flow separation at the 
leading edge, subsequent reattachment and the recov- 
ery of  the laminar boundary layer. From the heat 
transfer point of  view, on the other hand, it is common 
practice to prescribe a uniform upstream velocity at 
the leading edge in order to compute the forced con- 
vection heat transfer rate over the horizontal surface. 
Furthermore, this fluid mechanical boundary con- 
dition can only be realistic when the plate is extremely 
thin, or has a downward taper cut at the edge. There- 
fore, in applying a heat transfer correlation obtained 
from a Blasius-type velocity profile to a real problem. 
extreme caution is required. 

Nonetheless, we have decided to follow a for- 
mulation that is consistent with that employed by 
previous authors of  conjugate heat transfer problems 
[19] : that is, we prescribe zero shear stress at y = 0, 
which is consistent with a uniform stream boundary 
condition at x = - b /2  for a boundary-layer regime. 
One advantage in doing so is that we can present and 
highlight conjugate effects as a deviation from those 
of  an isothermal plate. In addition, once one starts 
taking into account the full details of  incoming flows 
at the leading edge, it becomes virtually impossible to 
extract any meaningful compact  heat transfer cor- 
relation in a simple parametric domain, because the 
upstream velocity conditions will now depend on both 
the Reynolds number and the thickness of  the 
upstream slab face. As for the situation downstream 
of  the plate, here too the condition of  zero shear stress 
may appear to be unrealistic, although it may serve 
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as an adequate approximation to the situation in a 
grooved channel [6] ; of course, for a boundary-layer 
regime, the boundary condition downstream of the 
slab should have very little effect on heat transfer at 
the slab surface itself. The above ideas are expressed 
mathematically as follows. 

Introducing dimensional variables appropriate to 
the present situation as 

x y u v 6 
e=U : d= " b U ~  

d)= ~ 0 , . -  A T  0 ~ -  A T  (1) 

where AT = T ~ - T ~  and ff is the stream function, 
defined by 

medium. 
expect 

For the outer boundary conditions, we 

0c--+0 a s y ~ :  I x [ ~ o c  (14) 

- ~ l  a s y - ~ o o  I x l - - , o c  (15) 
f~r 

¢o-~0 a s ) , ~ o o  ) x l ~  (16) 

although we discuss the implementation of these in 
greater detail in Section 4. The physical quantities 
of greatest interest are then the dimensionless local 
Nusselt number,  given by 

N u =  - \ @ / , . = o  ]xl <,5 (17) 

O~b 0~ and the dimensionless average Nusselt number,  
u = - -  v - (2) defined as c?), ~x 

we drop the hats to obtain the equations governing 
vorticity and energy transport  for the fluid, in the 
form 

, 2 

Nu = Nu dx. (18) 
1,2 

V 2 ~  = - -0 ' . )  ( 3 )  

"~xx +V~-y = ~eV~¢o (4) 

d0f +vg_~ _ 1 
U~,x t3y Re Pr v20f (5) 

and for the conductive solid slab 

V20~ = 0 (6) 

where Re and Pr are the Reynolds and Prandtl  num- 
bers as given in the Nomenclature, and V 2 is the Lapla- 
cian in Cartesian coordinates (x, y). The inner bound- 
ary conditions for equations (3)-(6) are 

20 l ¢=?~fiy=0 o n y = 0  Ix[ ~<~ (7) 

1 
a 2 g ' = 0  o n y = 0  [ x l > ~  (8) 

1 
0 s = Of on y = 0 Ixl ~ ~ (9) 

~30r k t30~ 1 
ay - ~y o n y  = 0 Ixl ~< ~ (10) 

O0f 1 
c~3--7. = 0  o n y = O  I x ( > ~  (11) 

(?0~ 1 
~x 0 o n x  + ~  - 2 ~ < y ~ < 0  (12) 

' ( 1 3 )  0~= 1 o n y =  -)~ Ixl ~ 

where 2 = a/b is the aspect ratio of the conducting 
slab and k = k~/kf is the ratio of the thermal con- 
ductivities of the conducting solid and the fluid 

3. THEORETICAL CONSIDERATIONS FOR Re >> 1 

For  the case Re >> 1, conductive heat flow in the 
solid is coupled to the convective heat flow within the 
thermal and viscous boundary  layers that are present 
at the conjugate boundary.  Denoting by 0o the tem- 
perature at ( -  1/2, 0), where it is clear that 0 ~< 00 ~< 1, 
a total of  four cases emerge, namely 00 > 0 and 00 = 0 
when Pr >~ 1 and Pr << 1, and we treat these as follows. 

3.1. P r>~ l  
For 00 > 0, the appropriate rescalings are given by 

= Re ~2qj co = Re~'2O y =  Re 1,2 y 

(19) 

so that, on invoking the boundary-layer approxi- 
mation, equations (3)-(5) reduce to 

E~p 
¢3 y~ = - f~ (20) 

O~P Of~ O~P dQ Ozf~ 

OY ~'~ OX OY Oy2 
(21) 

e [dW OOf ~u? ~?Of~ c?zOf (22) 

from equations (20) and (21), we eliminate f~ and 
integrate once with respect to Y to obtain 

(23) 
~Y ~ Y ~ X  c~X (?y 2 t~y 3 

where X = x +  1/2, with the start of  the boundary 
layer now at X = 0. The boundary conditions relevant 
to the layer are now 
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8tP 
• = ~ - - ~ = 0  o n Y = O  X~>O (24) 

0r=0~ o n Y = 0  0~<X~<I  (25) 

on Y = 0  0~<X<~ 1 (26) 
8Y a 8y 

Bud 
- - ~ I  0 ¢ ~ 0  ~--*0 a s Y - ~ o v  (27) 
8Y 

where a = Re ~ 2/k is a dimensionless parameter. Initial 
conditions are also required at X = 0. These come 
from assuming that there is a uniform stream at ambi- 
ent temperature for X ~< 0, so that the appropriate 
conditions are 

Sod 
- - = 1  a t X = 0  (28) 
8Y 

0 r = 0  a t X = 0  (29) 

we return to the validity of these assumptions in Sec- 
tion 5. 

For the purpose of analytical development and ulti- 
mate numerical solution, it is better to reformulate 
equations (23)-(29) using similarity-like variables. 
Writing 

tP(X, Y) = X'/ZF(X, ~) Or(X, Y) = G(X, ~) 

Y 
= ~ (30) 

equations (23) and (22) reduce to 

FF' / 8K , &F\ 
F ' +  T =  X ( F ~ - ~ "  ~X) (31) 

G" FG" / eG 8F\ 
+ T = x (32) P~ 

where the primes denote differentiation with respect 
to ~. The boundary conditions for 0 ~< X ~< 1 in terms 
of F and G are 

F = F ' = 0  o n e = 0  (33) 

0 ~ = G  o n e = 0  (34) 

80~ 
G' o n e = 0  (35) 

8y X I'~ 

F'--+I G-+0  as~--)oo (36) 

with equations (28) and (29) satisfied automatically 
by the choice of variables. Letting X --) 0, we arrive at 
the ordinary differential equations 

F '"+  f f ~  = 0 (37) 

G" FG" 
p~ + ~ -  = 0 (38) 

subject to 

F = F ' = 0  o n e = 0  (39) 

U - ~ l  G--*0 a s ~ + m  (40) 

but with equation (34) now replaced by 

G = 0 o  o n e = 0  (41) 

where the constant 00 is, of course, as yet unknown. 
Furthermore, the canonical substitution G = 00C~, 
removes 0o from the system of equations (37)-(41), 
which may be solved once and for all ahead of the rest 
of the computations. 

Now, we observe that from the condition for con- 
tinuity of heat flux at the conjugate boundary in the 
vicinity of X = 0 

80, aOo 
8y X,, 2 G'(0) (42) 

so that the heat flux has an integrable singularity, 
which we remove as follows. Introducing plane polar 
coordinates (r, ~b), given by 

X = r c o s ~ b  Y=rs in4~ 

we note that boundary conditions (12) and (42) 
become 

805 
8 ~ = 0  o n ~ b = - ~  (43) 

80~ 
8~ = aO°G'(O)r~'2 on ~b = O. (44) 

A harmonic function which satisfies these boundary 
conditions is 

O~(r, 4)) = ArJ"2 " 6p sm ~ (45) 

A = - 2 ~ a 0 0 G ' ( 0 )  (46) 

so that we may remove the singularity at r = 0 by 
writing 05 = 0s + 0". Thence, 0* satisfies 

V20 *= 0 (47) 

subject to 

0"=00(~--0~ o n y = 0  0~<X~<I (48) 

80* ~00 80, 
8 j , - X  ~'2 ( ~ ' - -  o n y = 0  0~<X~< l (49) 8y 

80* 
8 3 = 0  o n X = 0  - 2 ~ < y ~ < 0  (50) 

80- 80, 
o n X =  1 - 2 ~ < y ~ < 0  (51) 

8 x -  8), 

0 " = 1 - 0 ,  o n ) , =  - 2  0~<X~<I.  (52) 

Recast into this form, with the singularity at r = 0 
removed, the equations are amenable to numerical 
solution by methods to be described shortly, provided 

where 
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00 > 0. The case when 00 = 0 proceeds slightly differ- 
ently, however, and we include it for completeness. 

Here, the similarity-like variables are 

W ( X , Y ) =  X"+F(X,~) OfCX, Y) = X'2G(X,~)  

Y 
. . . .  (53) 

- -  X I , 2  

with governing equations 

FF" / DF', ~F) 
F" + ~ -  = X I F  ~ F - aX] (54) 

G" 1 (F  ~G_ G,c~F~ 
+ ~(FG' -GU)  = X \ i?X ,?XJ (55) Pr 

and boundary conditions for 0 ~< x ~< I 

F = U = 0  o n e = 0  (56) 

O~=XI~2G o n ~ = O  (57) 

- G '  o n e : 0  ( 5 8 )  
~y X 1'2 

U - ~ I  G--*0 a s ( - ~ o c .  (59) 

Letting X -~ 0, we arrive at 

FF" 
F ' " +  - ~ -  = 0 (60) 

G" 1 
Prr + ~(FG'-GF')  = 0 (61) 

subject to 

F = F ' = 0  o n [ = 0  (62) 

F - ~ l  G ~ 0  a s ~ o c  (63) 

with the initial conditions already satisfied thanks to 
the choice of variables. Here, the apparent shortfall 
in boundary conditions is made up for by observing 
that the canonical forms G = QG are also solutions 
to equations (60)-(63), with Q a constant  to be deter- 
mined. Subsequently, f and 67 satisfy equations (60)- 
(63), with the extra boundary  condition appearing in 
the form 

G'(0) = - 1 (64) 

and with Q being determined from the continuity of 
heat flux at Y = 0 once the solution for 0~ has been 
found. This time, there is no singularity near the origin 
with respect to 0~, which now satisfies the boundary 
conditions 

O~ = QXt2G 

00~ _ Q a G '  
& 

0~=1 

gO~ 
- - = 0  
gx 

o n y = 0  0 < X < I  (65) 

o n y = 0  0 < X <  1 (66) 

o n y = - 2  0 < X < I  (67) 

o n X = O ,  1 - 2 ~ < y ~ < O .  (68) 

Although we have not  used this formulation for our 
numerical scheme, we note here that it is the appro- 
priate one to choose in the thin-slab limit ( 2 - ,  0) 
considered previously by Pop and lngham [19]. 

3.2. Pr << 1 
For this regime, the thermal boundary layer, of 

thickness (Re Pr) - L~2, is much thicker than the viscous. 
To obtain the governing equations for 0f, which 
replace equations (23)-(29), we refer back to the sca- 
lings given by equation (19), except this time with 

y : ( R e P r )  -1/2 Y. 

At leading order, the boundary-layer equations are 
n o w  

0T 02h u {~T (~2~p 
0 (69) 

PY ~Y~X ?,X ~y  ~ 

- ( 7 0 )  
i?Y <?X ~X +Y (?y2 

from these, we can obtain 

W m y (71) 

- ( 7 2 )  ~OX #y2 

where equation (72) satisfies the boundary conditions 

Of=O~ on Y = 0  0~<X~<I  (73) 

(?Of I O0~ 
on Y = 0  0~<X~< 1 (74) 

6Y a ?y 

0 r ~ 0  as Y ~ ,  (75) 

Of=O a t X = 0  (76) 

and where a is now given by a =(RePr)~/~/k. The 
equations for the viscous boundary layer of thickness 
Re-~;2, incidentally, remain the same as before, but 
their solution is not  necessary for determining Of. 

Treating once again the case when 00 > 0 first, we 
note a discontinuity in the boundary conditions for Of. 
at X = 0, Y = 0 which is liable to cause numerical 
difficulties. The singularity may be removed using a 
coordinate transformation, as follows. Writing 

Y 
q - S = X ''~ (77) 

X 1 2  

equation (72) becomes 

(78) 

subject to 

O+=Or o n y t = 0  0 ~ < S ~ < I  

I +?Of 

S +?q 
I g0~ 

o n q = 0  0 ~ < S ~ < I  

(79) 

(8O) 
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Of ---~ 0 as r/---~ ~ .  

Furthermore, equation (76) is replaced by considering 
the limit of equations (78)-(81) as S ~ 0; in particu- 
lar, we obtain the ordinary differential equation 

subject to 

d 2 0 r  r / d 0 ~  

d, +i =0 

(81 ) 0r(X, Y) = erfc 

- e~{r~*~c' erfc ( & 2  +~X ~2 ) (90) 

(82) which then gives 

0,()¢) = 1 -e~2Xerfc(~X'a). (91) 

0r --+ 0 asq ~ o0 (83) 

0 r = 0  onr  1 = 0  (84) 

which leads to the solution 

0r(q, 0 ) =  00 erfc (2)  (85) 

where erfc(X) denotes the complementary error func- 
tion given by 

2 ( '  '~ 
erfc(X) = ~ | e -'-~ ds. 

Subsequently, we arrive at 

~0~ {~00 
o n y = 0  a s X ~ 0  

P,  ( ~ t 9 1  '~ 

which suggests, by analogy with equations (42) and 
(46), that we should take 

A - 2x/2a0° (86) 
7~ 1/2 

in order to remove the singularity in 0~. As a corollary 
to the above considerations, we note finally that when 
00 = 0, there is no singularity at X = 0, Y = 0, and 
the equations can be solved numerically without 
recourse to transformation equation (77). 

Finally, we observe that in the thin-slab limit con- 
sidered by Pop and Ingham [19], a closed-form solu- 
tion may be derived for Pr << 1, as follows. In this 
situation we have that 

- -  = 0 ( 8 7 )  (TV 2 

which then gives 

(0n(X) - 1) 
0~(~ ( ,y )  - ~ y + 0 d X )  ( 8 8 )  

which leads to equation (72), subject to equations (75) 
and (76) and 

00r 
. ~  = r(Or-- 1) (89) 

where ~ = k/2(RePr)  v2. With reference to Carslaw 
and Jaeger [21, p. 74], the solution for Or for 0 ~< X ~< 1 
may be written down as 

3.3. Solution 
The numerical solution procedure was identical to 

that used by Vynnycky and Kimura [22], the only 
difference being the actual form of the boundary-layer 
equations. In summary, the latter were discretized and 
solved using the Keller-Box method, as described by 
Cebeci and Bradshaw [23], whilst regular five-point 
differencing was used for the slab temperature, with 
the two temperature distributions being coupled via 
the conditions at the conjugate boundary which then 
had to be iterated for; the convergence criterion used 
w a s  

maxjO~"+'~-O~"'l I < 10 ̀ 7 
i# 

where m denotes the iteration order, and i and j are 
indices over y and x, respectively. For those parameter 
combinations which yielded converged solutions, con- 
vergence was obtained within 20 iterations, requiring 
less than a minute of CPU time on a Cray Super- 
computer. However, in common with the results in 
ref. [22], it became quickly evident that convergence 
was only possible for sufficiently small values of the 
parameter ~. For instance, for Pr = 102 no solutions 
at all were obtained for 2 = 0.25 and 1, Re = 500, 104, 
k = 1, 2, 5, 20 ; for Pr = 10 -2, further runs carried out 
in addition to the above indicated that the scheme 
became non-convergent for, approximately, 
a > V/5/3, when 2 = 0.25, and for ~ > v/5/6, when 
2 = 1 .  

3.4. Quasi-two-dimensional analogue 
A simpler approach for determining the tem- 

perature profile approximately in the solid when 
Re >>1 proves to be valid for certain parameter 
ranges, to be ascertained in Section 5, or Pr, k and 2. 
This involves assuming one-dimensional heat flow in 
the slab in order to obtain a horizontally-averaged 
Nusselt number and conjugate boundary tempera- 
ture, which are then used as input for the boundary 
conditions for a Dirichlet problem for the slab, as 
follows. We assume first that Pr >~ O(1). 

Defining the average conjugate boundary tem- 
perature 0b by 

i 
1 

0,, = Or(O, y) dX 
) 

then, on using the scalings of equation (19) and the 
canonical transformation used after equation (41), 
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albeit with 0u replacing 00, averaging over 0 ~< X ~< 1 
gives, for 0~, 

0 b - -  l 
0~ (y) = --)~---y + 0 b. (92) 

Integrating equation (35) over 0 ~< X ~< 1 gives [22] 

k -  
=(0b-- 1) = 2 Re'/ZObff/(O) (93) z 

where (~'(0), which depends only on the Prandtl  
number,  comes from the solution of equations (37)- 
(41) ; in fact, a useful correlation, due to Pohlhausen 
[24], is 

G'(O) = 0.332Pr ~/3. (94) 

Rearranging (93), we arrive at 

1 
0b(#) = (95) 

Nu(# ,  k /2)  =--(k/'~)l~ (96) 
1 + ~  

where 

2 Pr  ~n Re  j'2 
/~ - 1.506k (97) 

The case for Pr << l, Re  Pr  >> 1 proceeds similarly, 
except that the equivalent of (93) here is 

k -  2 
v ( 0 ~ -  1) = - ~:~,~(RePr)'/zOb (98) 
A 7Z,,~ 

and 0b and ATu are once again given by (95) and (96), 
respectively, except with (97) replaced by 

22(Re  Pr)l /z  
(99) 

# krt~/2 

With 0b determined we proceed with a substitution 
for Ou(x) in the form 

0 b ( X  ) = Z(X_~_~) ), 12~. X ~ 1 (100) 

where X and y are real constants to be determined as 
follows, Equation (100), with y = 1/2, in fact expresses 
the actual boundary  temperature profile for a non- 
conjugate problem in which the heated boundary is 
subjected to a constant  flux ~; in the present treat- 
ment, however, it is proposed to determine )¢ based 
on heat transfer between the solid and the fluid, We 
continue to work with the parameter 7, incidentally, 
because analogous results are relevant in a variety of 
other conjugate problems : for instance, in conjugate 
free convection past a vertical plate in a Newtonian 
fluid [22], ~, = I/5, whereas for the corresponding situ- 
ation in a porous medium 7 = 1/3 [25]. In particular, 
Z is given by 

Z x +  dx = 0b (101) 
1/2 

whence the resulting Dirichlet problem for 0~, that is 
equation (6), subject to equations(12) and (13) and 

I ~ I (102) 0 s = 0b(X ) o n y  = 0 --~-~ x ~< 

gives a series solution in the form 

V 
o, (x ,y )  = - ~ + 2(~,+ 1)Ob 

o=, 1. s~nhnn~ cosn~ z +  (103) 

where the integrals In are given by 

fo' I~ = x '  cos nTrx d x  (104) 

the heat flux at the conjugate boundary is then 

8yL.=0 = - ~ +20b(7+ 1)~Z 

4. NUMERICAL SOLUTION 

Equations (3)-(6), subject to equations (7)-(16), 
were solved numerically using a non-uniform Car- 
tesian grid, with the control volume method of Pat- 
ankar  [26] being used to discretize equations (4) and 
(5), and regular five-point differencing being used for 
equations (3) and (6). Subsequently, equations (3) 
and (4) were swept over simultaneously and solved 
using Gauss-Seidel iteration, subject to a convergence 
criterion 

tin) ( m -  1 ) max(Oi j  - ~ ' i i  I Io)!S~-~o}~-'~l) < 10 '-8 
j 

the velocity field so generated for a particular value 
of Re was then used as input for equations (5) and 
(6), which were solved for in the same way. In general, 
a relaxation parameter of 1.8 was used for equations 
(3) and (6), and 0.7 for equations (4) and (5), and 
each calculation required of the order of a few minutes 
on a Cray Supercomputer. 

To deal with the boundary  conditions at infinity, 
we implemented analytical formulae for •, e0 and 0 
which we derived in similar fashion to those of Rob- 
ertson et al. [27] for a related problem. Whilst we 
omit the details of the derivation, we note that the 
expressions for ~k and ~o are exactly the same, although 
the expression for 0 differs slightly, since the boundary 
conditions for x > 1/2 are for zero flux, rather than 
zero temperature ; thence, denoting by xo~ and y~ the 
finite x- and y-values taken for 'effective' infinity, we 
quote the necessary results as, for x = - x ~ ,  
O <~ y <~ y~, a n d y = y~ ,  - x ~  <~ x <~ O 
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Of = 0  

b y +  - l + - t a n  -~ 
7~ 

o 9 = 0  

and for x = x~, 0 ~<y ~<y~. a n d y  = y~, 0 ~< x ~< x~ 

Of ~ Ax-1.2 e -R,.p~-~..4, +o(r .i..2) 

~ y+  ~ t a n - '  (v)-~erf(ReJ'2Y)+\~j o(1) 

Re3'~ Cd Y e-&,?,4X+o(r- 2) 
4~/2 x32 

where 

eft(X) = 1 -e r f c (X)  

Cd is the corresponding drag coefficient, given by 

2 1 I/2 
Ca . . . .  ~o(x, 0) dx 

R e d , j 2  

and the constant A, given by 

l i_ '2 0) dx 
A - (~ Re Pr) 1'2 I.'2 oy 

is derived by considering the balance between the heat 
lost at the slab surface, and that transported down- 
stream. 

We envisaged obtaining results for the range 
102 ~< Re <<, 104 , Pr = 10 -2 , I0: and so a variety of  
meshes were initially experimented with in order to 
resolve adequately the thermal and viscous boundary 
layers present in the fluid ; a uniform mesh was always 
used for the solid. For  all computations,  a mesh which 
was uniform in x for the extent of  the slab, and whose 
spacing in x increased geometrically for 
1/2 < Ix] ~< x_~., was used. The spacing in y was also 
non-uniform and determined geometrically in such a 
way that there were always 10 points within a distance 
equal to the magnitude of  the shortest physically rel- 
evant fluid length scale ; thus, for a given Re, in view 
of the fact that the largest value of  Pr used was 102, 
the appropriate distance was (100Re)-~/2. For  all runs, 
x~ = y~ = 5 proved to be large enough. Typically, 20 
mesh points were used for the y-direction in the fluid, 

75 each for the regions upstream and downstream of  
the plate in the x-direction, and 50 x 50 points for the 
slab itself. 

For  the non-conjugate problem, the method was 
checked against results available in the literature. Our 
tests are summarized in Table 1, which compares 
the results obtained against theoretical results for the 
scaled drag coefficient and the scaled Nusselt number 
which pertain in the limit of  high Re. The agreement 
is particularly good in the second and fifth columns, 
whilst we suspect that a lower value of  Pr would 
need to he taken in order to obtain better agreement 
towards the bot tom of  the third column. This view is 
reinforced by the fact that Nu/(RePr) I/2 for Re = l 0  4 

increases monotonically as Pr ~ 0: for instance, we 
obtained from further computations that for 
Pr = 5 × 10- 3 and Re Pr = 50, Nu/(Re Pr) ~" = 1.139, 
whilst for Pr = 10 -3 and RePr = 10, 
Nu/(RePr) ~2= 1.156, much more in line with the 
theoretical value of  1.128. There is a discrepancy of  a 
few percent towards the bot tom of  the fourth column 
for Pr = 1, probably due to the fact that Nu is inte- 
grably singular at x = _+ 1/2 ; this order of  error is not 
uncommon in computations of  this sort [22]. 

5. RESULTS 

For  the range in Re and Pr mentioned above, 
numerical results were obtained for k = 1, 2, 5, 20, 
2 = 0.25, I. To facilitate understanding, we point out 
in advance that for Figs. 4-11, we have adopted the 
convention that full or broken lines are for solutions 
obtained from Navier-Stokes computat ions and that 
shaded and open symbols are for solutions due to the 
analytical methods of  Sections 3.2 and 3.4, respec- 
tively; for Figs. 12 and 13, the convention for lines 
and open symbols is reversed. 

First, in Figs. 2 and 3, the isotherm dependency on 
the various parameters is demonstrated when 
Re = 10 4, 2 = 0.25. In Fig. 2, where Pr = 10-2, the 
lower value o f k  (a) ensures a far greater temperature 
drop across the solid than is the case for the higher 
value (b); also outstanding in (b) is a kink in the 
isotherm for 0 = 0.9 at the conjugate boundary, which 
is due to the high conductivity ratio between the two 
media. Figure 3 for the high Prandtl number regime, 
on the other hand, illustrates that most of  the tern- 

Table 1. Comparison of scaled Cd and A3u values for computed solutions with analytical results for Pr = 10-2, 1, l0  2 

Nu/(Re Pr) t:2 ~u/Re12 ~u/Re J:2 pr I/3 
Re CdRe 1/2 (Pr = 10 ~) (Pr = 1) (Pr = 10 2) 

100 1.662 1.215 0.676 0.707 
500 1.482 1.035 0.651 0.687 

1000 1.431 1.006 0.644 0.682 
5000 1.359 0.977 0.634 0.673 

10 000 1.329 0.972 0.631 0.671 
Theoretical 1.328 1.128 0.664 0.664 
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, ~ . .  , 

(a) 

(b) 
Fig. 2. Isotherms for Re = 10  4, Pr = 10 2 2 = 0.25 (40 = 0.1): (a) k = 1 ; (b) k = 20. 

(a) 

(b) 
Fig. 3. Isotherms for Re = 104 , Pr = 102 ,), = 0.25 (40 = 0.1): (a) k = 1 ; (b) k = 20. 

perature drop occurs across the solid both for k = 1 
and 20 and that, in particular in plot (b), any drop 
that does occur within the fluid is contained within a 
thin boundary layer adjacent to the surface of  the slab. 

Figures 4-7 show the local Nusselt number for a 
range of  k values lying between, and including, those 
used for Figs. 2 and 3, for 2 = 0.25, 1, Re = 5 x 102, 
104. Also included here is a comparison, where poss- 
ible, with the semi-analytical method of  Sections 3,1 
and 3.2 ; however, for the ranges of  Re and k that were 
chosen, the number of  converged solutions that were 
actually obtained is relatively small, since in most 
cases a exceeds the threshold values indicated in Sec- 
tion 3.3. The common feature of  the Navier-Stokes 
computations in many of the plots is that of  high local 
Nusselt number at the left-hand end of  the conjugate 
boundary which decreases monotonically for most of 

the length, before increasing markedly towards the 
end of  the slab ; the curves for the analytical solutions 
do not, unsurprisingly, show this last feature, since no 
attempt was made to account for the discontinuity in 
boundary conditions at the slab surface at (1/2,0) 
which is responsible for the increase in local Nusselt 
number, The agreement between the two methods is 
quite good, given that, as mentioned in Section 4, 
Pr = 10 2 is insufficiently low for good agreement in 
the limit as Pr -~ 0. A further observation here is that, 
particularly in Figs. 6 and 7, the local Nusselt number 
is approximately constant for most of  the conjugate 
boundary, suggesting that the constant-flux approxi- 
mation developed in Section 3.4 may provide 
adequate results for Pr >> 1, provided k ~< 5 ; this point 
is explored further presently. 

Figures 8 11 show the conjugate boundary tern- 
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perature (Oh) for Figs. 4-7 respectively ; in Figs. 8 and 
9, the analytical solution that is referred to is that 
developed in Section 3.2, while for Figs. 10 and 11 it 
is that given by (100) under the constant-flux approxi- 
mation. In Figs. 8 and 9, we see quite good agreement 
for 0b, although as in ref, [22], there is a significant 
difference between the profiles near the leading edge 
of the slab. A similar point has been discussed before 
[22], and concerns the assumptions used in employing 
the boundary  conditions (28) and (29) for the start of  
the boundary layer. By analogy with the earlier paper, 
one would expect agreement for 00 to improve as Re Pr 
is increased, something which plainly does not  happen 
if we compare the results for k = 20 in Fig. 8(a, b). 
Although we have not resolved this issue by compu- 
tation, it may be suspected that once again the value 
for Pr is not  actually sufficiently low to permit a fair 
comparison. A further issue of interest is that the 
numerical method of Section 3.3, both here and in ref. 
[22], consistently fails where 00 ~ 0.5, a point worthy 
of further investigation. 

Turning to Figs. I0 and 11, on the other hand, 
comparison of 0b does indeed indicate that the con- 
stant-flux approximation provides an adequate 

description of flow within the solid when Pr >> 1, 
k ~ 5, since agreement in 0b subsequently ensures 
agreement for 0s by the uniqueness property of the 
Dirichlet problem. As in earlier conjugate convection 
studies [22, 25], it is evident from these figures that an 
increase in the parameter controlling heat flow in the 
boundary-layer, here Re Pr, or an increase in 2 
decreases the boundary temperature, whilst an 
increase in k increases it. 

Figures 12 and 13 summarize the bulk of the com- 
putations in terms of the average Nusselt number  
dependency on Re, as well as comparing these results 
with the predictions of the analytical formulae (95) 
and (96). In Fig. 12, we see good agreement for both 
aspect ratios for k ~< 5, but  note quite substantial 
deterioration for k = 20; the latter feature is once 
again hardly surprising, since the regime k >> 1 cor- 
responds to an isothermal plate, the solutions to which 
were discussed in Section 4. In Fig. 13, the results for 
Pr = 102 agree well for all four values of k displayed, 
with agreement for the high k values guaranteed by 
the results for the isothermal plate shown earlier in 
Table 1. 

In summary, therefore, we obtain agreement to 
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within 1 or 2% for ~Tu, in particular for lower values 
of k, and agreement to within perhaps 5% when k 
is as high as 20. As for local quantities 0b and Nu, 
quantitative comparison with the coupled con- 
duction-boundary-layer method of  Sections 3.1 and 
3.2 is only possible for k ~> 5 and leads to agreement 
to within a couple of per cent for the majority of the 
conjugate interface. The leading and trailing edges of 
the plate tend to be more problematical, with differ- 
ences in 0b and Nu sometimes greater than 10% ; this is 
not surprising at the trailing edge, since the asymptotic 
method, which treats essentially a parabolic system of  
equations, is not able to capture the temperature drop 
that occurs in the full elliptic system. 

6. CONCLUSIONS 

This paper has attempted to provide a com- 
prehensive account of two-dimensional forced con- 
vection flow over a slab of both finite length and 
thickness. The governing momentum and heat trans- 
fer equations were solved numerically using an 
efficient finite-difference scheme for a wide range of 

the four non-dimensional parameters (Re, Pr, k, 2) 
that appear in the problem. In addition, the Re >> 1 
regime was investigated further using two analytical 
methods of varying complexity. An averaging method 
that was developed provides good agreement with 
the full equations for k ~< 5 and Pr >> 1, as well as 
providing good predictions for the mean Nusselt num- 
ber (bTu) and conjugate boundary temperature (0b); 
in particular, the method indicates that 0b can be 
reduced, via equation (95), to a function of  just one 
parameter, whilst hTu reduces to a function of two. A 
second method which coupled two-dimensional con- 
duction in the slab with convective flow in the adjacent 
boundary layer was also developed. For Pr >~ 1, the 
relevant parameter set is (Rel/2/k, Pr, 2), whilst for 
Pr << 1, heat flow depends on just ((Re Pr)l/2/k, ~.) ; the 
greatest simplification, however, comes for Pr, 2 << 1, 
in which case the only governing parameter is 
;~(Re Pr)l/Z/k. Whilst this second method appears able 
to provide an adequate representation of the heat flow 
for Re >> 1, its range of applicability was found to be 
limited owing to convergence difficulties associated 
with the iterative solution of the discretized equations, 
particularly for Pr >> 1. 
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Fig. 12. Average Nusselt number  (ATu) vs Re for Pr = 10 -~: 

(a) 2 = 0,25; (b) 2 = 1. 
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